

Ultra high stability temperature compensated crystal oscillator Product name : TG5032CAN / TG5032SAN

Features

- Ultra high stability
- Low phase noise
- Frequency range : 10 MHz to 50 MHz
- Output : CMOS, Clipped sine wave
- Supply voltage : 2.7 to 5.5 V
- External dimensions : 5.0 × 3.2 × 1.45 mm
- Small size package (10pads)
- Pb free.
- Complies with EU RoHS directive.

Applications

- Femtocell
- Small Cells
- Network system etc.

Description

This product is ultra high stability temperature compensated crystal oscillator of CMOS and Clipped sine wave outputs using fundamental oscillation of Crystal unit. This has realized a low phase noise in frequency 10 to 50 MHz, and it is suitable for the reference clock include Femtocell and Small Cell.

Explanation of t	the mark that are using it for the documents
Pb Free	► Pb free.
	► Complies with EU RoHS directive.
RoHS	*About the products without the Pb-free mark.
Compliant	Contains Pb in products exempted by EU RoHS directive.
	(Contains Pb in sealing glass, high melting temperature type solder or other.)
For Automotive	► Designed for automotive applications such as Car Multimedia, Body Electronics, Remote Keyless Entry etc.
Automotive Salety	► Designed for automotive applications related to driving safety (Engine Control Unit, Air Bag, ESC etc).

[Notice]

This material is subject to change without notice.

Any part of this material may not be reproduced or duplicated in any form or any means without the written permission of Seiko Epson.

- The information about applied data, circuitry, software, usage, etc. written in this material is intended for reference only. Seiko Epson does not assume any liability for the occurrence of customer damage or infringing on any patent or copyright of a third party. This material does not authorize the licensing for any patent or intellectual copyrights.
- When exporting the products or technology described in this material, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- You are requested not to use the products (and any technical information furnished, if any) for the development and/or manufacture of weapon of mass destruction or for other military purposes. You are also requested that you would not make the products available to any third party who may use the products for such prohibited purposes.

These products are intended for general use in electronic equipment. When using them in specific applications that require extremely high reliability, such as the applications stated below, you must obtain permission from Seiko Epson in advance.

/ Space equipment (artificial satellites, rockets, etc.) / Transportation vehicles and related (automobiles, aircraft, trains, vessels, etc.) / Medical instruments to sustain life / Submarine transmitters / Power stations and related / Fire work equipment and security equipment / traffic control equipment / and others requiring equivalent reliability.

1. Electrical characteristics

1) Absolute maximum ratings

Parameter	Symbol	Unit	Min.	Тур.	Max	Notes
Supply voltage	V _{CC} -GND	V	-0.6	-	+6.0	
Storage temperature	T_stg	°C	-40	-	+90	Store as bare product after packing
Frequency control voltage	V _C -GND	V	-0.6	-	V _{CC} +0.6	V _C Terminal

2) Operating conditions

Parameter	Symbol	Unit	Min.	Тур.	Max	Notes
			2.7	2.85	3.0	V _{CC} =2.85 V Type
	Vcc		2.85	3.0	3.15	V _{CC} =3.0 V Type
Supply voltage		V	3.135	3.3	3.465	V _{CC} =3.3 V Type
			4.75	5.0	5.25	V _{CC} =5.0 V Type
	GND		0.0	-	0.0	
Operating temperature range	т	°C	0	+25	+70	Standard
Operating temperature range	T_use	-C	-40	+25	+85	(Option)
	Vc		GND	N.C.	-	V _C Terminal / TCXO
		V	0.5	1.5	2.5	V _C Terminal / VC-TCXO
Frequency control voltage			0.65	1.65	2.65	(V _{CC} =2.85, 3.0, 3.3 V Type)
			0.5	2.5	4.5	V _C Terminal / VC-TCXO (V _{CC} =5.0 V Type)
	Load_C	pF	13.5	15	16.5	CMOS output
	Load_C	pF	9	10	11	
Output load condition	Load_R	kΩ	9	10	11	 Clipped sine wave
	Cc	μF	0.01	-	-	DC-cut capacitor *1 Clipped sine wave

*1 DC-cut capacitor is not included in this TCXO. Please attach an external DC-cut capacitor (0.01 µF Min.) to the out pin.

3-1) Frequency characteristics

(Vcc=Tvp., GND=0.0 V, Vc=Tvp, V, Load=Tvp., T, use=+25°C)

ax Notes 0 .0 .0 Standard .0 (Option) 10 T_use=0°C to +70°C (Standard)
.0 Standard .0 (Option)
.0 (Option)
.0 (Option)
10 T use -0° C to $+70^{\circ}$ C (Standard)
$10 1 200 = 0 0 0 \pm 10 0 (0 a 10 a 10)$
10 T_use=0°C to +85°C (Option1)
10 T_use=-10°C to +70°C (Option2)
25 T_use=-40°C to +85°C (Option3)
08 T_use=+50°C to +70°C (Option4)
10 $T_use=+15^{\circ}C$ to $+85^{\circ}C$ (Option4)
25 $T_use=-5^{\circ}C$ to +85°C (Option4)
08 T_use=+40°C to +60°C (Option5)
10 $T_use=0^{\circ}C$ to +70°C (Option5)
25 T_use=-20°C to +70°C (Option5)
.1 Load +/-10% (~40MHz)
.2 Load +/-10% (~50MHz)
05 Load +/-10% (Clipped sine wave)
05 Load +/-2% (~40MHz)
.1 Load +/-2% (~50MHz)
02 Load +/-2% (Clipped sine wave)
.1 V _{CC} +/-5% (~40MHz)
.2 V _{CC} +/-5% (~50MHz)
05 V _{CC} +/-5% (Clipped sine wave)
05 V _{CC} +/-2% (~40MHz)
.1 V _{CC} +/-2% (~50MHz)
02 V _{CC} +/-2% (Clipped sine wave)
Minimum of 1 frequency reading every
.1 2°C, over the operating temperature
range (1°C/minute max.)
.2 Frequency measured before and after at +25°C.
02 T_use=+25°C, 24 hours
.0 T_use=+25°C, First year
.2 T_use=+25°C, 1 month(Option)
.0 T_use=+25°C, 3 years(Option)
3 axes, 30-1500 Hz

*2 Measured in the elapse of 24 hours after reflow soldering.

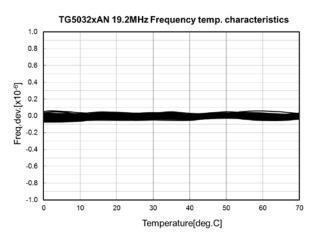
*3 After 48 hours of continuous operation.

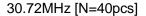
3-2) Frequency control characteristics (Vcc=Typ., GND=0.0 V, Vc=Typ. V, Load=Typ., T_use=+25°C)						
Parameter	Symbol	Unit	Min.	Тур.	Max	Notes
Frequency control range	f cont	× 10 ⁻⁶	-10.0	-	-5.0	Vc=1.5V+/-1.0V, at Vcc=2.85 to, 3.3V
Frequency control range	I_COM	× 10	+5.0	-	+10.0	Vc=2.5V+/-2.0V, at Vcc=5.0V
Linearity	-	%	-10	-	+10	
Input impedance	Z _{IN}	kΩ	100	-	-	V_{C} -GND(DC), V_{C} =Typ.
Frequency change polarity	-	-	F	Positive polari	ty	

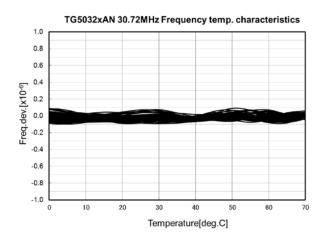
4) Electrical Characteristics

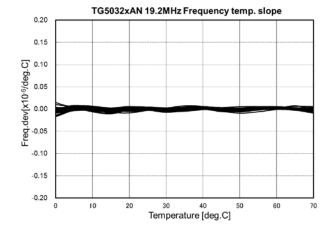
(Vcc=Typ., GND=0.0 V, Vc=Typ. V, Load=Typ., T_use=+25°C)

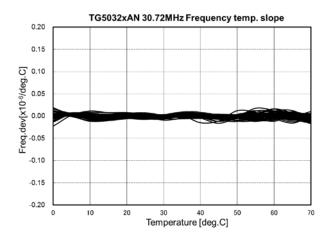
$\begin{array}{c} \mbox{Current consumption} \\ \mbox{Lurent consumption} \\ \mbox{I}_{CC} $	Notes bed sine wave (Standard) bed sine wave (Option) =2.85, 3.0, 3.3V (~26MHz) =2.85, 3.0, 3.3V (~40MHz) =2.85, 3.0, 3.3V (~50MHz) =5.0V (~26MHz) =5.0V (~26MHz) =5.0V (~40MHz) =5.0V (~40MHz) =5.0V (~50MHz) r ON (Standard) r OFF (Option) Vcc to 90%Vcc level DS output Vcc level DS output D level(DC-cut) bed sine wave (Option) DS output D soutput D level (DC-cut) bed sine wave coffset *4, *5
$ \begin{array}{c} \mbox{Current consumption} \\ \mbox{L} \m$	bed sine wave (Option) =2.85, 3.0, 3.3V (~26MHz) =2.85, 3.0, 3.3V (~40MHz) =2.85, 3.0, 3.3V (~50MHz) =5.0V (~26MHz) =5.0V (~26MHz) =5.0V (~26MHz) =5.0V (~50MHz) =5.0V (~50MHz) r ON (Standard) r OFF (Option) Vcc to 90%Vcc level DS output Vcc level DS output D level(DC-cut) ped sine wave (Option) DS output D soutput D soutput </td
$ \begin{array}{c} \mbox{Current consumption} \\ \mbox{L} \m$	=2.85, 3.0, 3.3V (~26MHz) =2.85, 3.0, 3.3V (~40MHz) =2.85, 3.0, 3.3V (~50MHz) =5.0V (~26MHz) =5.0V (~40MHz) =5.0V (~50MHz) r ON (Standard) r OFF (Option) Vcc to 90%Vcc level OS output Vcc to 10%Vcc level OS output Vcc level OS output O level(DC-cut) oed sine wave (Option) OS output D soutput D so
$ \begin{array}{c} \mbox{Current consumption} \\ \mbox{L} \mbox{Current consumption} \\ \mbox{L} \mbox{L} \mbox{Current consumption} \\ \mbox{L} \mbox{L} \mbox{L} \mbox{Current consumption} \\ \mbox{L} \mbox$	=2.85, 3.0, 3.3V (~40MHz) =2.85, 3.0, 3.3V (~50MHz) =5.0V (~26MHz) =5.0V (~40MHz) =5.0V (~50MHz) r ON (Standard) r OFF (Option) Vcc to 90%Vcc level DS output Vcc to 10%Vcc level DS output Vcc level DS output D level(DC-cut) ped sine wave (Option) DS output DS output
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	=2.85, 3.0, 3.3V (~50MHz) =5.0V (~26MHz) =5.0V (~40MHz) =5.0V (~50MHz) r ON (Standard) r OFF (Option) Vcc to 90%Vcc level OS output Vcc to 10%Vcc level OS output Vcc level OS output O Vcc level OS output O level(DC-cut) ped sine wave (Option) OS output DS output DS output DS output DS output DS output S output DS output S output DS output S out
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	=5.0V (~26MHz) =5.0V (~40MHz) =5.0V (~50MHz) r ON (Standard) r OFF (Option) Vcc to 90%Vcc level DS output Vcc to 10%Vcc level DS output OVcc level DS output D level(DC-cut) ped sine wave (Option) DS output DS outp
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	=5.0V (~40MHz) =5.0V (~50MHz) r ON (Standard) r OFF (Option) Vcc to 90%Vcc level DS output Vcc to 10%Vcc level DS output Vcc level DS output D level(DC-cut) oed sine wave (Option) DS output DS
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	=5.0V (~50MHz) r ON (Standard) r OFF (Option) Vcc to 90%Vcc level DS output Vcc to 10%Vcc level DS output OC level DS output D level(DC-cut) Ded sine wave (Option) DS output DS outpu
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	r ON (Standard) r OFF (Option) Vcc to 90%Vcc level DS output Vcc to 10%Vcc level DS output O vcc level DS output D level(DC-cut) oed sine wave (Option) DS output DS output
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	r OFF (Option) Vcc to 90%Vcc level DS output Vcc to 10%Vcc level DS output Vcc level DS output D level(DC-cut) oed sine wave (Option) DS output DS outp
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vcc to 90%Vcc level DS output Vcc to 10%Vcc level DS output Vcc level DS output D level(DC-cut) oed sine wave (Option) DS output DS output DS output DS output DS output S output DS output S
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DS output Vcc to 10%Vcc level DS output Vcc level DS output D level(DC-cut) oed sine wave (Option) DS output DS output DS output coffset *4, *5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vcc to 10%Vcc level DS output Vcc level DS output D level(DC-cut) bed sine wave (Option) DS output DS output DS output coffset *4, *5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DS output Vcc level DS output D level(DC-cut) bed sine wave (Option) DS output DS output bed sine wave c offset *4, *5
Symmetry SYM $^{-}$ <	Vcc level DS output D level(DC-cut) bed sine wave (Option) DS output DS output bed sine wave c offset *4, *5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DS output D level(DC-cut) Ded sine wave (Option) DS output DS output Ded sine wave c offset *4, *5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	D level(DC-cut) bed sine wave (Option) DS output DS output bed sine wave c offset *4, *5
High output voltage V _{OH} V 90% V _{CC} - - CMC Low output voltage V _{OL} V - - 10% Vcc CMC Output level Vp-p Vp-p 0.8 - - Clipp - - - - 68 -54 1 Hz - - - - - 10 H - - - - - 10 H - - - - 10 H - - - - - 10 H - - - - - - 10 H - - 10 H - - - - - 10 H - 10 H	bed sine wave (Option) DS output DS output bed sine wave c offset *4, *5
High output voltage V _{OH} V 90% V _{CC} - - CMC Low output voltage V _{OL} V - - 10% Vcc CMC Output level Vp-p Vp-p 0.8 - - Clipp - - -68 -54 1 Hz - -68 -54 1 Hz - - -96 -84 10 H - - - 109 100	DS output DS output bed sine wave c offset *4, *5
Low output voltage Vol. V - - 10% Vcc CMC Output level Vp-p Vp-p 0.8 - - Clipp - -68 -54 1 Hz - -68 -54 1 Hz - -96 -84 10 H - - -101 -89 10 H - - -119 -109 100 - - - -	DS output bed sine wave coffset *4, *5
Low output voltage V _{OL} V - - 10% Vcc CMC Output level Vp-p Vp-p 0.8 - - Clipp Image: Comparison of the system Vp-p Vp-p 0.8 - - Clipp Image: Comparison of the system Image: Comparison of the system - -68 -54 1 Hz Image: Comparison of the system - -68 -54 10 H Image: Comparison of the system - -101 -89 10 H Image: Comparison of the system - -119 -109 100	oed sine wave coffset *4, *5
68 -54 1 Hz 96 -84 10 H 101 -89 10 H 119 -109 100	c offset *4, *5
96 -84 10 H 101 -89 10 H 119 -109 100	
101 -89 10 H 119 -109 100	
119 -109 100	Iz offset *4
	Iz offset *5
	Hz offset *4
Phase noise dBc/128 -118 100	Hz offset *5
	Iz offset *4
	Iz offset *5
	Hz offset *4, *5
	kHz offset *4, *5
	Hz offset *4, *5
	c offset *4, *5
	Iz offset *4
	Iz offset *5
	Hz offset *4
	Hz offset *5
	Hz offset *4, *5
	kHz offset *4, *5
	Hz offset *4, *5
	z offset *4, *5
	Iz offset *4
	Iz offset *5
	Hz offset *4
	Hz offset *5
(50MHz) L(f) Hz131 -123 1 kH	Iz offset *4
	Iz offset *5
	Hz offset *4, *5
	kHz offset *4, *5
156 -150 100	

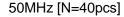

*4 This value without optional phase noise filter capacitor. *5 This value within optional phase noise filter capacitor.

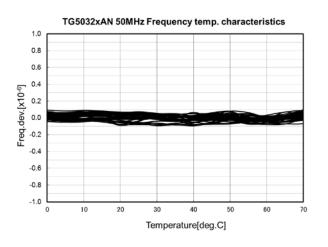


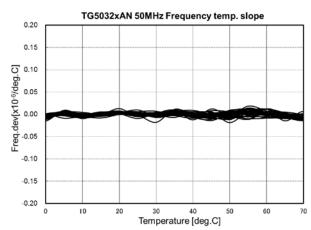

2. Characteristics

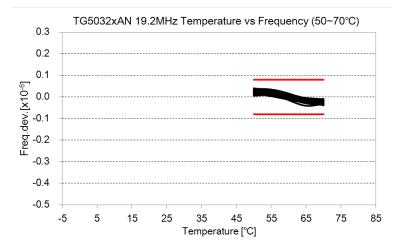

2-1) "Frequency / temperature characteristics" 2-1-1) Standard spec : +/-0.1 × 10⁻⁶ Max. (T_use=0°C to +70°C)

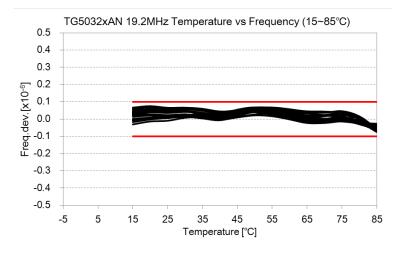

19.2MHz [N=40pcs]

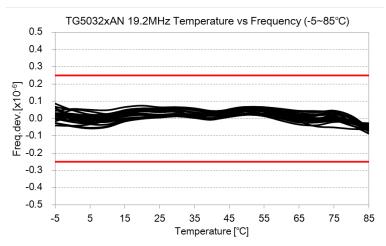




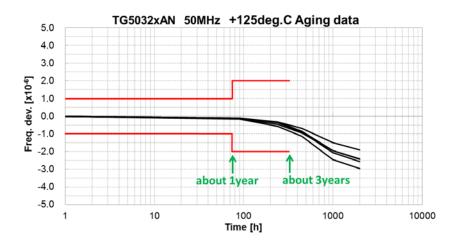


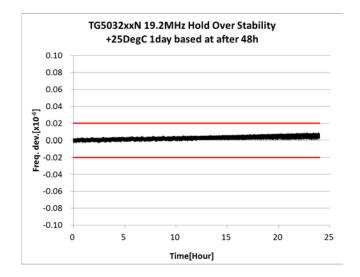


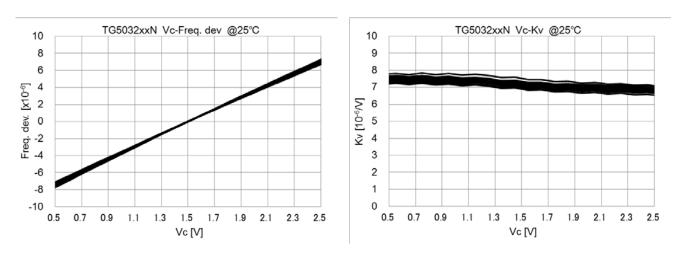




2-1-2) "Option 4" spec +/-0.08 × 10⁻⁶ Max. / +50 °C to +70 °C and +/-0.10 × 10⁻⁶ Max. / +15 °C to +85 °C and +/-0.25 × 10⁻⁶ Max. / -5 °C to +85 °C


19.2MHz [N=20pcs]

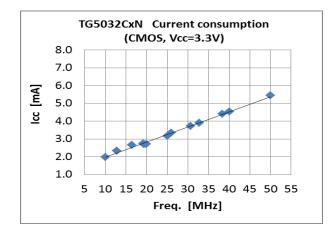

2-2) Frequency aging (50MHz) [N=5pcs]

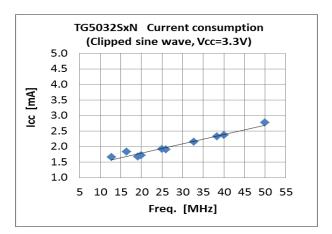


about 1year Ave. : -0.12 x 10⁻⁶ Max. : -0.10 x 10⁻⁶ Min. : -0.16 x 10⁻⁶

about 3years Ave. : -0.41 x 10⁻⁶ Max. : -0.32 x 10⁻⁶ Min. : -0.57 x 10⁻⁶

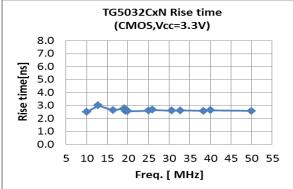
2-3) Holdover stability (19.2MHz) [N=40pcs]

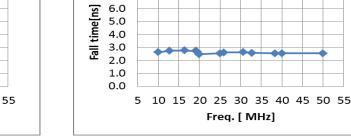




2-4) Frequency control characteristics [N=40pcs]

2-5) current consumption

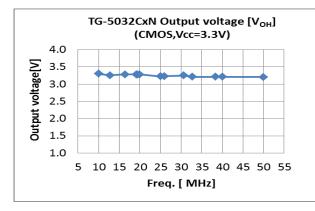




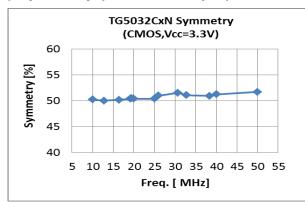
TG5032CxN Fall time

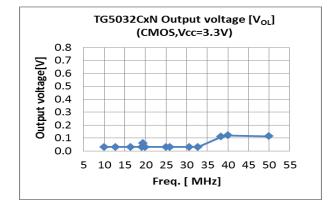
(CMOS,Vcc=3.3V)

2-6) Rise time / Fall time (at CMOS output)

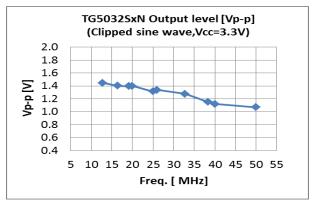

8.0

7.0

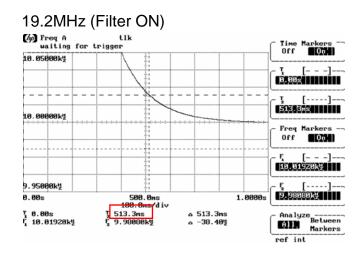

6.0

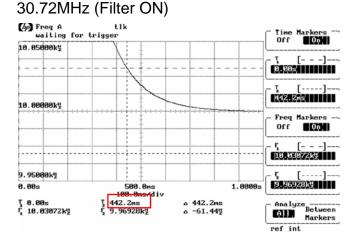

5.0

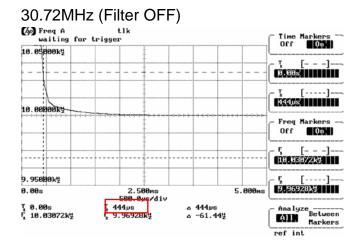
2-7) Output voltage [V_{OH}, V_{OL}] (at CMOS output)

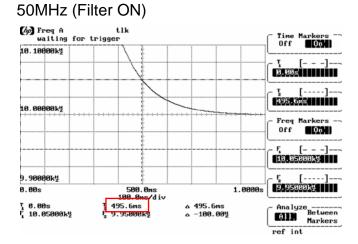


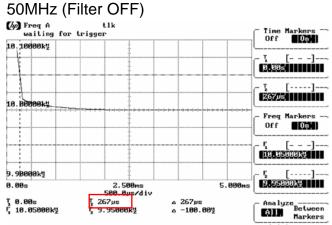
2-8) Symmetry (at CMOS output)


2-9) Output level [V_{P-P}] (at Clipped sine wave)

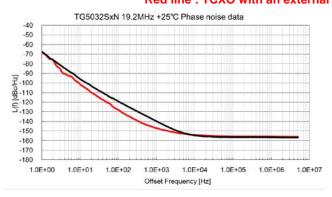

Seiko Epson Corporation Document No.: TG5032xAN_AE_Ver. 1.02 Date: Mar. 1st 2017

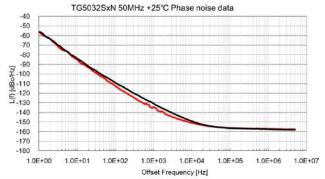



2-10) start up time(19.2MHz, 30.72MHz, 50MHz, Type: Filter ON or Filter OFF)

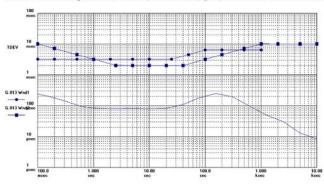


19.2MHz (Filter OFF) by Freq A tlk waiting for trigger Time Markers 10.05000ky [- - -]rā gas in titu [----1 356µs 10.00000k¥ Freq Mark Off On --------- F. [- - -]---18.8192889 - ç [-----]---9.98080k¥ 9.95000ky 2.500ms 0.00s 5.00 2,300 588,8µs 356µs 9,98080kÿ Analyze Between All Markers T 0.00s F 10.01920ky ⊿ 356µs ⊿ −38.40½ ref int

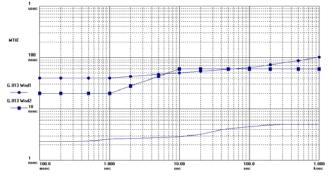


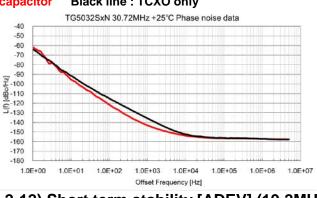

All Between ref int

Seiko Epson Corporation Document No.: TG5032xAN_AE_Ver. 1.02 Date: Mar. 1st 2017


8/22

2-11) Phase noise (19.2MHz, 30.72MHz, 50MHz, refer to data of Page3.) Red line : TCXO with an external filter capacitor Black line : TCXO only

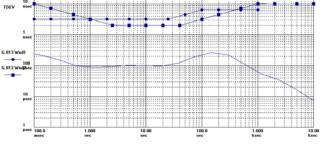




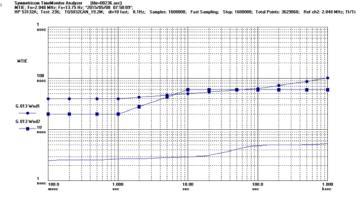
2-14) MTIE (19.2MHz, Loop BW=0.1Hz) Constant temperature : +25 deg.C

Symmetricom TimeMonitor Analyzer [file=00190.asc] MTIE; Fo=2.048 MHz; Fa=13.20 Hz; *2015/04/24 08:10:40*; HP 55132A; Text: 190: T65032CAN 19:2M: div10 fast; 0.1Hz

Compliant with G.813 option1 and 2

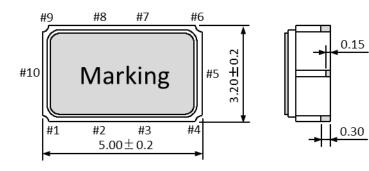


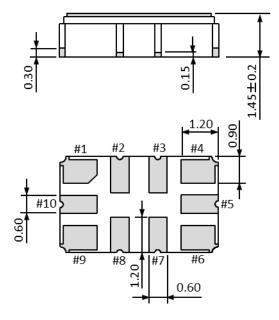
EPS


2-12) Short term stability [ADEV] (19.2MHz)

Constant temperature : +70 deg.C

Constant temperature : +70 deg.C



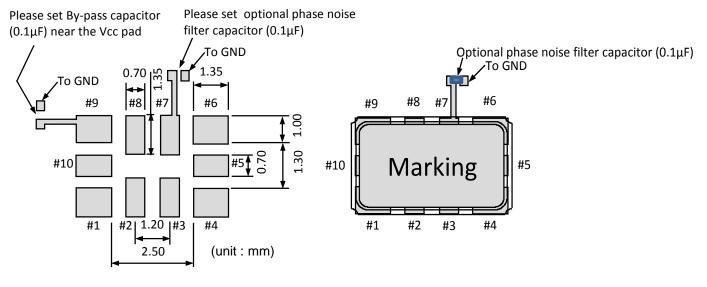

3. Outline

3-1) Outline dimensions and Pin information

TG5032CAN/SAN

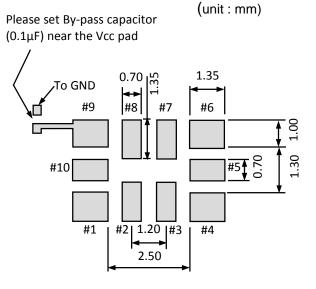
Unit: mm

Pin	Connections		
Pin	VC-TCXO	тсхо	
1	Vc	N.C.	
2	N.C.		
3	N.C		
4	GND		
5	N.C.		
6	OUT		
7	N.C. or Filter		
8	N.C.		
9	V _{cc}		
10	N.C).	


Do not connect "N.C." pin with any other pins (also mutually)

3-2) Soldering pattern

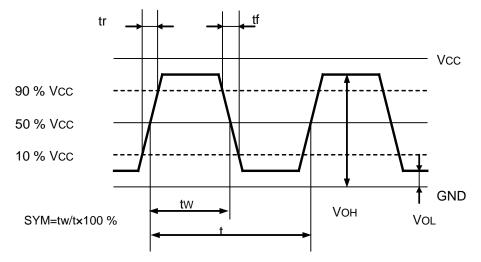
Example of patterning design indicated as follows. In an actual design, please consider mounting density, the reliability of soldering, etc. and check whether performance is optimal.


3-2-1) Soldering pattern of TG5032CAN/SAN (Filter input pattern)

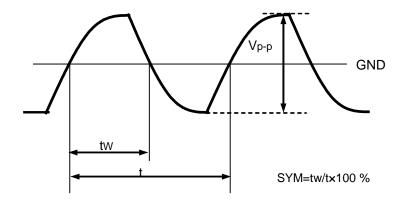
To maintain stable operation, provide a 0.1uF by-pass capacitor at a location as near as possible to the power source terminal of the crystal product (between Vcc - GND).

The phase noise of 10pads TCXO can be improved by adding an external filter capacitor between #7 pin and GND. The recommend capacitor value is 0.1μ F.

3-2-2) Soldering pattern of TG5032CAN/SAN (Without filter pattern)



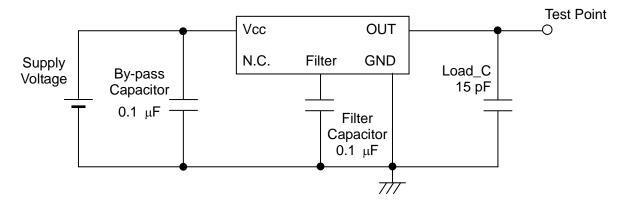
To maintain stable operation, provide a 0.1uF by-pass capacitor at a location as near as possible to the power source terminal of the crystal product (between Vcc - GND).

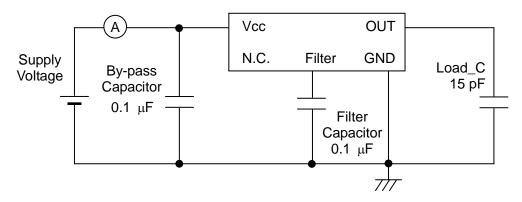


4. Timing chart

4-1) Output waveform (CMOS output)

4-2) Output waveform (Clipped sine wave output)




5. Test circuit

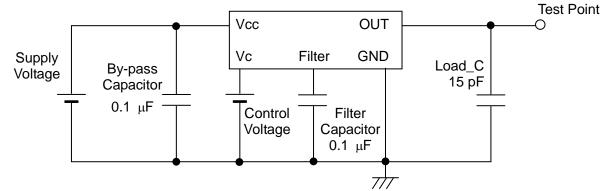
5-1) CMOS output for TCXO (Within filter capacitor)

1) Output Load : 15 pF

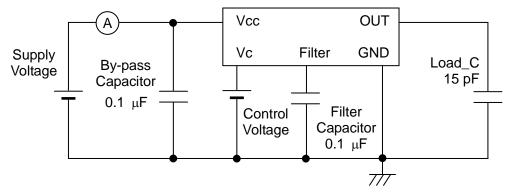
2) Current consumption

3) Conditions

1. Oscilloscope:	Impedance	Min. 1 MΩ
	Input capacitance	Max. 10 pF
	Band width	Min. 300 MHz


Impossible to measure both frequency and wave form at the same time.(In case of using oscilloscope's amplifier output, possible to measure both at the same time.)

- 2. Load_C includes probe capacitance.
- 3. A capacitor (By-pass: 0.1 μ F) is placed between V_{CC} and GND, and closely to TCXO.
- 4. Use the current meter whose internal impedance value is small.
- 5. Power Supply


Impedance of power supply should be as low as possible.

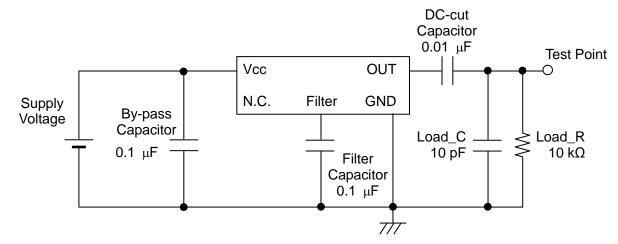
5-2) CMOS output for VC-TCXO (Within filter capacitor)

1) Output Load : 15 pF

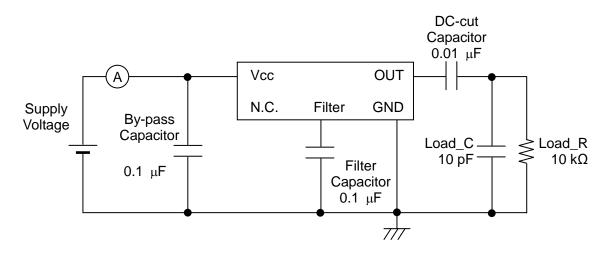
2) Current consumption

3) Conditions

1. Oscilloscope:	Impedance	Min. 1 MΩ
	Input capacitance	Max. 10 pF
	Band width	Min. 300 MHz


Impossible to measure both frequency and wave form at the same time.(In case of using oscilloscope's amplifier output, possible to measure both at the same time.)

- 2. Load_C includes probe capacitance.
- 3. A capacitor (By-pass: 0.1 $\,\mu\text{F})$ is placed between V $_{\text{CC}}$ and GND, and closely to TCXO.
- 4. Use the current meter whose internal impedance value is small.
- 5. Power Supply


Impedance of power supply should be as low as possible.

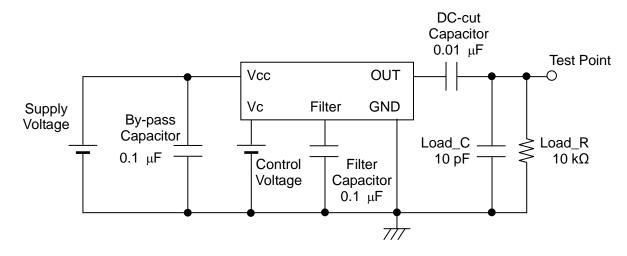
5-3) Clipped sine wave output for TCXO (Within filter capacitor)

1) Output Load : 10 k Ω // 10 pF

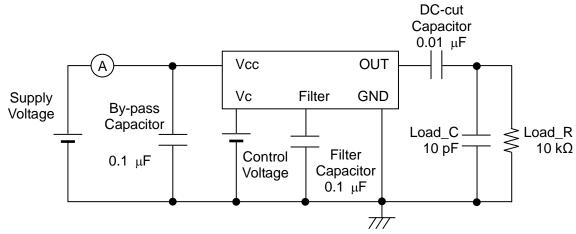
2) Current consumption

3) Conditions

1. Oscilloscope:	Impedance	Min. 1 MΩ
	Input capacitance	Max. 10 pF
	Band width	Min. 300 MHz


Impossible to measure both frequency and wave form at the same time.(In case of using oscilloscope's amplifier output, possible to measure both at the same time.)

- 2. Load_C includes probe capacitance.
- 3. A capacitor (By-pass: 0.1 $\,\mu\text{F})$ is placed between V $_{\text{CC}}$ and GND, and closely to TCXO.
- 4. Use the current meter whose internal impedance value is small.
- 5. Power Supply


Impedance of power supply should be as low as possible.

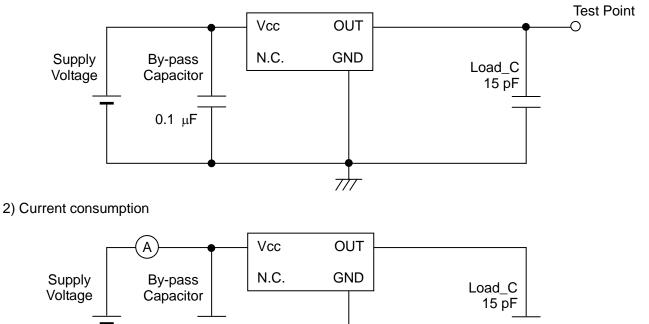
5-4) Clipped sine wave output for VC-TCXO (Within filter capacitor)

1) Output Load : 10 k Ω // 10 pF

2) Current consumption

3) Conditions

1. Oscilloscope:	Impedance	Min. 1 MΩ
	Input capacitance	Max. 10 pF
	Band width	Min. 300 MHz


Impossible to measure both frequency and wave form at the same time.(In case of using oscilloscope's amplifier output, possible to measure both at the same time.)

- 2. Load_C includes probe capacitance.
- 3. A capacitor (By-pass: 0.1 $\,\mu\text{F})$ is placed between V $_{\text{CC}}$ and GND, and closely to TCXO.
- 4. Use the current meter whose internal impedance value is small.
- 5. Power Supply

Impedance of power supply should be as low as possible.

5-5) CMOS output for TCXO (Without filter capacitor)

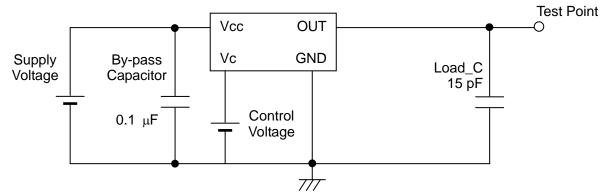
1) Output Load : 15 pF

777

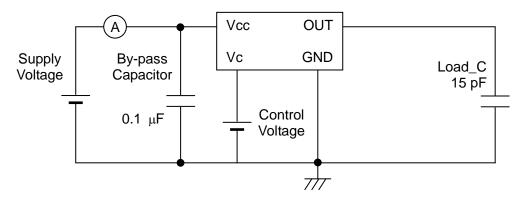
3) Conditions

1. Oscilloscope:	Impedance	Min. 1 MΩ
	Input capacitance	Max. 10 pF
	Band width	Min. 300 MHz

0.1 μF


Impossible to measure both frequency and wave form at the same time.(In case of using oscilloscope's amplifier output, possible to measure both at the same time.)

- 2. Load_C includes probe capacitance.
- 3. A capacitor (By-pass: 0.1 $\,\mu\text{F})$ is placed between V $_{\text{CC}}$ and GND, and closely to TCXO.
- 4. Use the current meter whose internal impedance value is small.
- 5. Power Supply


Impedance of power supply should be as low as possible.

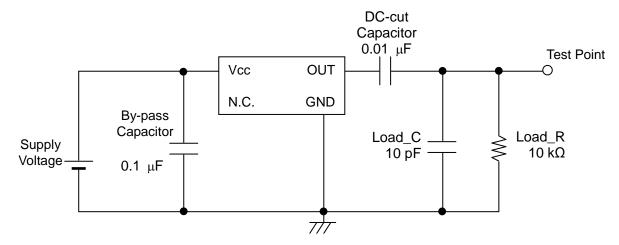
5-6) CMOS output for VC-TCXO (Without filter capacitor)

1) Output Load : 15 pF

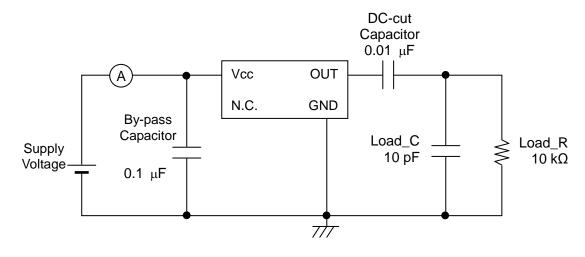
2) Current consumption

3) Conditions

1. Oscilloscope:	Impedance	Min. 1 MΩ
	Input capacitance	Max. 10 pF
	Band width	Min. 300 MHz


Impossible to measure both frequency and wave form at the same time.(In case of using oscilloscope's amplifier output, possible to measure both at the same time.)

- 2. Load_C includes probe capacitance.
- 3. A capacitor (By-pass: 0.1 $\,\mu\text{F})$ is placed between V $_{\text{CC}}$ and GND, and closely to TCXO.
- 4. Use the current meter whose internal impedance value is small.
- 5. Power Supply


Impedance of power supply should be as low as possible.

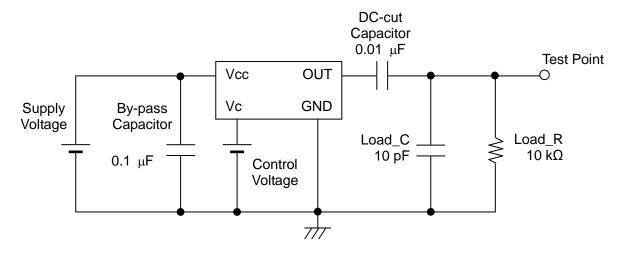
5-7) Clipped sine wave output for TCXO (Without filter capacitor)

1) Output Load : 10 k Ω // 10 pF

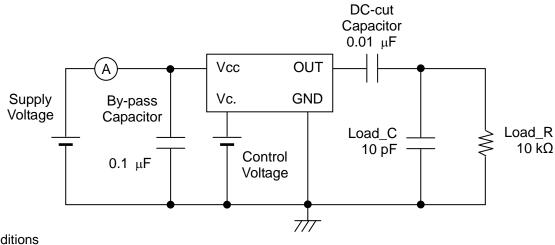
2) Current consumption

3) Conditions

1. Oscilloscope:	Impedance	Min. 1 MΩ
	Input capacitance	Max. 10 pF
	Band width	Min. 300 MHz


Impossible to measure both frequency and wave form at the same time.(In case of using oscilloscope's amplifier output, possible to measure both at the same time.)

- 2. Load_C includes probe capacitance.
- 3. A capacitor (By-pass: 0.1 $\,\mu\text{F})$ is placed between V $_{\text{CC}}$ and GND, and closely to TCXO.
- 4. Use the current meter whose internal impedance value is small.
- 5. Power Supply


Impedance of power supply should be as low as possible.

5-8) Clipped sine wave output for VC-TCXO (Without filter capacitor)

1) Output Load : 10 k Ω // 10 pF

2) Current consumption

3) Conditions

1. Oscilloscope:	Impedance	Min. 1 MΩ
	Input capacitance	Max. 10 pF
	Band width	Min. 300 MHz

Impossible to measure both frequency and wave form at the same time.(In case of using oscilloscope's amplifier output, possible to measure both at the same time.)

- 2. Load_C includes probe capacitance.
- 3. A capacitor (By-pass: 0.1 $\,\mu\text{F})$ is placed between V $_{\text{CC}}$ and GND, and closely to TCXO.
- 4. Use the current meter whose internal impedance value is small.
- 5. Power Supply

Impedance of power supply should be as low as possible.

6. Handling precautions

Prior to using this product, please carefully read the section entitled "Precautions" on our Web site

(<u>http://www5.epsondevice.com/en/quartz/tech/precaution/</u>) for instructions on how to handle and use the product properly to ensure optimal performance of the product in your equipment. Before using the product under any conditions other than those specified therein, please consult with us to verify and confirm that the performance of the product will not be negatively affected by use under such conditions.

In addition to the foregoing precautions, in order to avoid the deteriorating performance of the product, we strongly recommend that you <u>DO NOT</u> use the product under <u>ANY</u> of the following conditions:

- (1) Mounting the product on a board using water-soluble solder flux and using the product without removing the residue of the flux completely from the board. The residue of such flux that is soluble in water or water-soluble cleaning agent, especially the residues which contains active halogens, will negatively affect the performance and reliability of the product.
- (2) Using the product in any manner that will result in any shock or impact to the product.
- (3) Using the product in places where the product is exposed to water, chemicals, organic solvent, sunlight, dust, corrosive gasses, or other materials.
- (4) Using the product in places where the product is exposed to static electricity or electromagnetic waves.
- (5) Applying ultrasonic cleaning without advance verification and confirmation that the product will not be affected by such a cleaning process, because it may damage the crystal, IC and/or metal line of the product.
- (6) Touching the IC surface with tweezers or other hard materials directly.
- (7) Using the product under any other conditions that may negatively affect the performance and/or reliability of the product.
- (8) Power supply with ripple may cause of incorrect operation or degradation of phase noise characteristics, so please evaluate before use.
- (9) Frequency aging is from environmental tests results to the expectation of the amount of the frequency variation. This doesn't guarantee the product-life cycle.

Should any customer use the product in any manner contrary to the precautions and/or advice herein, such use shall be done at the customer's own risk.

7. Contact

<u>America</u>

Epson Electronics America, Inc. 214 Devcon Drive, San Jose, CA 95112, U.S.A. Phone: +1-800-228-3964 FAX: +1-408-922-0238

<u>Europe</u>

Epson Europe Electronics GmbH Riesstrasse 15, 80992 Munich, Germany Phone: +49-89-14005-0 FAX: +49-89-14005-110

<u>Asia</u>

Epson (China) Co., Ltd. 7F, Jinbao Bldg., No.89 Jinbao Street Dongcheng District, Beijing, China, 100005 Phone: +86-10-8522-1199 FAX: +86-10-8522-1120

Shanghai Branch

High-Tech Building, 900 Yishan Road, Shanghai 200233, China Phone: +86-21-5423-5577 FAX: +86-21-5423-4677

Shenzhen Branch

12/F, Dawning Mansion, #12 Keji South Road, Hi-Tech Park, Shenzhen, China Phone: +86-755-2699-3828 FAX: +86-755-2699-3838

Epson Hong Kong Ltd.

Unit 715-723 7/F, Trade Square, 681 Cheung Sha Wan Road, Kowloon, Hong Kong Phone: (86) 755-26993828 (Shenzhen Branch) FAX: (86) 755-26993838 (Shenzhen Branch)

Epson Taiwan Technology & Trading Ltd.

14F, No. 7, Song Ren Road, Taipei 110, Taiwan Phone: +886-2-8786-6688 FAX: +886-2-8786-6660

Epson Singapore Pte., Ltd.

No 1 HarbourFront Place, #03-02 HarbourFront Tower One, Singapore 098633 Phone: +65-6586-5500 FAX: +65-6271-3182

Seiko Epson Corp. Korea Office

 19F, (63 Bldg., Yoido-dong) 50, 63-ro, Yeongdeungpo-gu, Seoul 150-763, Korea

 Phone: +82-2-784-6027
 FAX: +82-2-767-3677